High-Definition Television
High-Definition Television
The NTSC standard was created in the 1930s, for black-and-white television transmissions. Color was added to it in 1953, after four years of testing. NTSC stands for National Television Standards Committee. This is a standard that specifies the shape of the signal sent by a television transmitter. The signal is analog, with amplitude that goes up and down during each scan line in response to the black and white parts of the line. Color was later added to this standard, but it had to be added such that blackand- white television sets would be able to display the color signal in black and white. The result was phase modulation of the black-and-white carrier, a kludge (television engineers call it NSCT “never the same color twice”).
With the explosion of computers and digital equipment in the last two decades came the realization that a digital signal is a better, more reliable way of sending images over the air. In such a signal the image is sent pixel by pixel, where each pixel is represented by a number specifying its color. The digital signal is still a wave, but the amplitude of the wave no longer represents the image. Rather, the wave is modulated to carry binary information. The term modulation means that something in the wave is modified to distinguish between the zeros and ones being sent. An FM digital signal, for example, modifies (modulates) the frequency of the wave. This type of wave uses one frequency to represent a binary zero and another to represent a one. The DTV (Digital TV) standard uses a modulation technique called 8-VSB (for vestigial sideband), which provides robust and reliable terrestrial transmission. The 8-VSB modulation technique allows for a broad coverage area, reduces interference with existing analog broadcasts, and is itself immune from interference.
History of DTV:
The Advanced Television Systems Committee (ATSC), established in 1982, is an international organization developing technical standards for advanced video systems. Even though these standards are voluntary, they are generally adopted by the ATSC members and other manufacturers. There are currently about eighty ATSC member companies and organizations, which represent the many facets of the television, computer, telephone, and motion picture industries. The ATSC Digital Television Standard adopted by the United States Federal Communications Commission (FCC) is based on a design by the Grand Alliance (a coalition of electronics manufacturers and research institutes) that was a finalist in the first round of DTV proposals under the FCC’s Advisory Committee on Advanced Television Systems (ACATS). The ACATS is composed of representatives of the computer, broadcasting, telecommunications, manufacturing, cable television, and motion picture industries. Its mission is to assist in the adoption of an HDTV transmission standard and to promote the rapid implementation of HDTV in the U.S.
The ACATS announced an open competition: Anyone could submit a proposed HDTV standard, and the best system would be selected as the new television standard for the United States. To ensure fast transition to HDTV, the FCC promised that every television station in the nation would be temporarily lent an additional channel of broadcast spectrum.
The ACATS worked with the ATSC to review the proposed DTV standard, and gave its approval to final specifications for the various parts—audio, transport, format, compression, and transmission. The ATSC documented the system as a standard, and ACATS adopted the Grand Alliance system in its recommendation to the FCC in late 1995. In late 1996, corporate members of the ATSC had reached an agreement on the DTV standard (Document A/53) and asked the FCC to approve it. On December 31, 1996, the FCC formally adopted every aspect of the ATSC standard except for the video formats. These video formats nevertheless remain a part of the ATSC standard, and are expected to be used by broadcasters and by television manufacturers in the foreseeable future.
HDTV Specifications:
The NTSC standard in use since the 1930s specifies an interlaced image composed of 525 lines where the odd numbered lines (1, 3, 5, . . .) are drawn on the screen first, followed by the even numbered lines (2, 4, 6, . . .). The two fields are woven together and drawn in 1/30 of a second, allowing for 30 screen refreshes each second. In contrast, a noninterlaced picture displays the entire image at once. This progressive scan type of image is what’s used by today’s computer monitors. The digital television sets that have been available since mid 1998 use an aspect ratio of 16/9 and can display both the interlaced and progressive-scan images in several different resolutions—one of the best features of digital video. These formats include 525-line progressive-scan (525P), 720-line progressive-scan (720P), 1050-line progressivescan (1050P), and 1080-interlaced (1080I), all with square pixels. Our present, analog, television sets cannot deal with the new, digital signal broadcast by television stations, but inexpensive converters will be available (in the form of a small box that can comfortably sit on top of a television set) to translate the digital signals to analog ones (and lose image information in the process). The NTSC standard calls for 525 scan lines and an aspect ratio of 4/3. This implies 4 3 ×525 = 700 pixels per line, yielding a total of 525×700 = 367,500 pixels on the screen. (This is the theoretical total, since only 483 lines are actually visible.) In comparison, a DTV format calling for 1080 scan lines and an aspect ratio of 16/9 is equivalent to 1920 pixels per line, bringing the total number of pixels to 1080 × 1920 = 2,073,600, about 5.64 times more than the NTSC interlaced standard.
In addition to the 1080 × 1920 DTV format, the ATSC DTV standard calls for a lower-resolution format with just 720 scan lines, implying 16 9 × 720 = 1280 pixels per line. Each of these resolutions can be refreshed at one of three different rates: 60 frames/second (for live video) and 24 or 30 frames/second (for material originally produced on film). The refresh rates can be considered temporal resolution. The result is a total of six different formats. Table 6.7 summarizes the screen capacities and the necessary transmission rates of the six formats. With high-resolution and 60 frames per second the transmitter must be able to send 124,416,000 bits/sec (about 14.83 Mbyte/sec), which is why this format uses compression. (It uses MPEG-2. Other video formats can also use this compression method.) The fact that DTV can have different spatial and temporal resolutions allows for tradeoffs. Certain types of video material (such as fastmoving horse- or car races) may look better at high refresh rates even with low spatial resolution, while other material (such as museum-quality paintings) should ideally be watched in high resolution even with low refresh rates.
Digital Television (DTV) is a broad term encompassing all types of digital transmission. HDTV is a subset of DTV indicating 1080 scan lines. Another type of DTV is standard definition television (SDTV), which has picture quality slightly better than a good analog picture. (SDTV has resolution of 640×480 at 30 frames/sec and an aspect ratio of 4:3.) Since generating an SDTV picture requires fewer pixels, a broadcasting station will be able to transmit multiple channels of SDTV within its 6 MHz allowed frequency range. HDTV also incorporates Dolby Digital sound technology to bring together a complete presentation.
Video compression methods.
Video compression methods.
Subsampling: The encoder selects every other frame and writes it on the compressed stream. This yields a compression factor of 2. The decoder inputs a frame and duplicates it to create two frames.
Differencing: A frame is compared to its predecessor. If the difference between them is small (just a few pixels), the encoder encodes the pixels that are different by writing three numbers on the compressed stream for each pixel: its image coordinates, and the difference between the values of the pixel in the two frames. If the difference between the frames is large, the current frame is written on the output in raw format. Compare this method with relative encoding, Section 1.3.1. A lossy version of differencing looks at the amount of change in a pixel. If the difference between the intensities of a pixel in the preceding frame and in the current frame is smaller than a certain threshold, the pixel is not considered different.
Block Differencing: This is a further improvement of differencing. The image is divided into blocks of pixels, and each block B in the current frame is compared to the corresponding block P in the preceding frame. If the blocks differ by more than a certain amount, then B is compressed by writing its image coordinates, followed by the values of all its pixels (expressed as differences) on the compressed stream. The advantage is that the block coordinates are small numbers (smaller than a pixel’s coordinates), and these coordinates have to be written just once for the entire block. On the downside, the values of all the pixels in the block, even those that haven’t changed, have to be written on the output. However, since these values are expressed as differences, they are small numbers. Consequently, this method is sensitive to the block size.
Motion Compensation: Anyone who has watched movies knows that the difference between consecutive frames is small because it is the result of moving the scene, the camera, or both between frames. This feature can therefore be exploited to get better compression. If the encoder discovers that a part P of the preceding frame has been rigidly moved to a different location in the current frame, then P can be compressed by writing the following three items on the compressed stream: its previous location, its current location, and information identifying the boundaries of P. The following discussion of motion compensation is based on [Manning 98]. In principle, such a part can have any shape. In practice, we are limited to equalsize blocks (normally square but can also be rectangular). The encoder scans the current frame block by block. For each block B it searches the preceding frame for an identical block C (if compression is to be lossless) or for a similar one (if it can be lossy). Finding such a block, the encoder writes the difference between its past and present locations on the output. Motion compensation is effective if objects are just translated, not scaled or rotated. Drastic changes in illumination from frame to frame also reduce the effectiveness of this method. In general, motion compensation is lossy
Frame Segmentation: The current frame is divided into equal-size nonoverlapping blocks. The blocks may be square or rectangles. The latter choice assumes that motion in video is mostly horizontal, so horizontal blocks reduce the number of motion vectors without degrading the compression ratio. The block size is important, since large blocks reduce the chance of finding a match, and small blocks result in many motion vectors. In practice, block sizes that are integer powers of 2, such as 8 or 16, are used, since this simplifies the software.
Search Threshold: Each block B in the current frame is first compared to its counterpart C in the preceding frame. If they are identical, or if the difference between them is less than a preset threshold, the encoder assumes that the block hasn’t been moved.
Block Search: This is a time-consuming process, and so has to be carefully designed. If B is the current block in the current frame, then the previous frame has to be searched for a block identical to or very close to B. The search is normally restricted to a small area (called the search area) around B, defined by the maximum displacement parameters dx and dy. These parameters specify the maximum horizontal and vertical distances, in pixels, between B and any matching block in the previous frame. If B is a square with side b, the search area will contain (b + 2dx)(b + 2dy) pixels (Figure 6.11) and will consist of (2dx+1)(2dy +1) distinct, overlapping b×b squares. The number of candidate blocks in this area is therefore proportional to dx·dy.
Distortion Measure: This is the most sensitive part of the encoder. The distortion measure selects the best match for block B. It has to be simple and fast, but also reliable. A natural question at this point is How can such a thing happen? How can a block in the current frame match nothing in the preceding frame? The answer is Imagine a camera panning from left to right. New objects will enter the field of view from the right all the time. A block on the right side of the frame may thus contain objects that did not exist in the previous frame.
Suboptimal Search Methods: These methods search some, instead of all, the candidate blocks in the (b+2dx)(b+2dy) area. They speed up the search for a matching block, at the expense of compression efficiency. Several such methods are discussed in detail in Section 6.4.1.
Motion Vector Correction: Once a block C has been selected as the best match for B, a motion vector is calculated as the difference between the upper-left corner of C and that of B. Regardless of how the matching was determined, the motion vector may be wrong because of noise, local minima in the frame, or because the matching algorithm is not ideal. It is possible to apply smoothing techniques to the motion vectors after they have been calculated, in an attempt to improve the matching. Spatial correlations in the image suggest that the motion vectors should also be correlated. If certain vectors are found to violate this, they can be corrected. This step is costly and may even backfire. A video presentation may involve slow, smooth motion of most objects, but also swift, jerky motion of some small objects. Correcting motion vectors may interfere with the motion vectors of such objects and cause distortions in the compressed frames.
Coding Motion Vectors: A large part of the current frame (maybe close to half of it) may be converted to motion vectors, so the way these vectors are encoded is crucial; it must also be lossless. Two properties of motion vectors help in encoding them: (1) They are correlated and (2) their distribution is nonuniform. As we scan the frame block by block, adjacent blocks normally have motion vectors that don’t differ by much; they are correlated. The vectors also don’t point in all directions. There are usually one or two preferred directions in which all or most motion vectors point; the vectors are thus nonuniformly distributed. No single method has proved ideal for encoding the motion vectors. Arithmetic coding, adaptive Huffman coding, and various prefix codes have been tried, and all seem to perform well. Here are two different methods that may perform better:
1. Predict a motion vector based on its predecessors in the same row and its predecessors in the same column of the current frame. Calculate the difference between the prediction and the actual vector, and Huffman encode it. This method is important. It is used in MPEG and other compression methods.
2. Group the motion vectors in blocks. If all the vectors in a block are identical, the block is encoded by encoding this vector. Other blocks are encoded as in 1 above. Each encoded block starts with a code identifying its type.
Coding the Prediction Error: Motion compensation is lossy, since a block B is normally matched to a somewhat different block C. Compression can be improved by coding the difference between the current uncompressed and compressed frames on a block by block basis and only for blocks that differ much. This is usually done by transform coding. The difference is written on the output, following each frame, and is used by the decoder to improve the frame after it has been decoded.
Suboptimal Search Methods
Suboptimal Search Methods
Video compression includes many steps and computations, so researchers have been looking for optimizations and faster algorithms, especially for steps that involve many calculations. One such step is the search for a block C in the previous frame to match a given block B in the current frame. An exhaustive search is time-consuming, so it pays to look for suboptimal search methods that search just some of the many overlapping candidate blocks. These methods do not always find the best match, but can generally speed up the entire compression process while incurring only a small loss of compression efficiency.
Signature-Based Methods: Such a method performs a number of steps, restricting the number of candidate blocks in each step. In the first step, all the candidate blocks are searched using a simple, fast distortion measure such as pel difference classification. Only the best matched blocks are included in the next step, where they are evaluated by a more restrictive distortion measure, or by the same measure but with a smaller parameter. A signature method may involve several steps, using different distortion measures in each.
Distance-Diluted Search: We know from experience that fast-moving objects look blurred in an animation, even if they are sharp in all the frames. This suggests a way to lose data. We may require a good block match for slow-moving objects, but allow for a worse match for fast-moving ones. The result is a block matching algorithm that searches all the blocks close to B, but fewer and fewer blocks as the search gets farther away from B. Figure 6.12a shows how such a method may work for maximum displacement parameters dx = dy = 6. The total number of blocks C being searched goes from (2dx + 1)·(2dy+1) = 13×13 = 169 to just 65, less than 39%!
Locality-Based Search: This method is based on the assumption that once a good match has been found, even better matches are likely to be located near it (remember that the blocks C searched for matches highly overlap). An obvious algorithm is to start searching for a match in a sparse set of blocks, then use the best-matched block C as the center of a second wave of searches, this time in a denser set of blocks. Figure 6.12b shows two waves of search, the first considers widely spaced blocks, selecting one as the best match. The second wave searches every block in the vicinity of the best match.
Quadrant Monotonic Search: This is a variant of locality-based search. It starts with a sparse set of blocks C that are searched for a match. The distortion measure is computed for each of those blocks, and the result is a set of distortion values. The idea is that the distortion values increase as we move away from the best match. By examining the set of distortion values obtained in the first step, the second step may predict where the best match is likely to be found. Figure 6.13 shows how a search of a region of 4×3 blocks suggests a well-defined direction in which to continue searching. This method is less reliable than the previous ones since the direction proposed by the set of distortion values may lead to a local best block, whereas the best block may be located elsewhere.
Dependent Algorithms: As has been mentioned before, motion in a frame is the result of either camera movement or object movement. If we assume that objects in the frame are bigger than a block, we conclude that it is reasonable to expect the motion vectors of adjacent blocks to be correlated. The search algorithm can therefore start by estimating the motion vector of a block B from the motion vectors that have already been found for its neighbors, then improve this estimate by comparing B to some candidate blocks C. This is the basis of several dependent algorithms, which can be spatial or temporal.
More Quadrant Monotonic Search Methods: The following suboptimal block matching methods use the main assumption of the quadrant monotonic search method.
Two-Dimensional Logarithmic Search: This multistep method reduces the search area in each step until it shrinks to one block. We assume that the current block B is located at position (a, b) in the current frame. This position becomes the initial center of the search. The algorithm uses a distance parameter d that defines the search area. This parameter is user-controlled with a default value. The search area consists of the (2d + 1)×(2d + 1) blocks centered on the current block B.
Three-Step Search: This is somewhat similar to the two-dimensional logarithmic search. In each step it tests eight blocks, instead of four, around the center of search, then halves the step size. If s = 3 initially, the algorithm terminates after three steps, hence its name.
Orthogonal Search: This is a variation of both the two-dimensional logarithmic search and the three-step search. Each step of the orthogonal search involves a horizontal and a vertical search. The step size s is initialized to (d + 1)/2, and the block at the center of the search and two candidate blocks located on either side of it at a distance of s are searched. The location of smallest distortion becomes the center of the vertical search, where two candidate blocks above and below the center, at distances of s, are searched. The best of these locations becomes the center of the next search. If the step size s is 1, the algorithm terminates and returns the best block found in the current step. Otherwise, s is halved, and a new, similar set of horizontal and vertical searches is performed.
One-at-a-Time Search: In this type of search there are again two steps, a horizontal and a vertical. The horizontal step searches all the blocks in the search area whose y coordinates equal that of block B (i.e., that are located on the same horizontal axis as B). Assuming that block H has the minimum distortion among those, the vertical step searches all the blocks on the same vertical axis as H and returns the best of them. A variation repeats this on smaller and smaller search areas.
Cross Search: All the steps of this algorithm, except the last one, search the five blocks at the edges of a multiplication sign “×”. The step size is halved in each step until it gets down to 1. At the last step, the plus sign “+” is used to search the areas located around the top-left and bottom-right corners of the preceding step. This has been a survey of quadrant monotonic search methods. We follow with an outline of two advanced search methods.
Hierarchical Search Methods: Hierarchical methods take advantage of the fact that block matching is sensitive to the block size. A hierarchical search method starts with large blocks and uses their motion vectors as starting points for more searches with smaller blocks. Large blocks are less likely to stumble on a local maximum, while a small block generally produces a better motion vector. A hierarchical search method is thus computationally intensive, and the main point is to speed it up by reducing the number of operations. This can be done in several ways as follows:
1. In the initial steps, when the blocks are still large, search just a sample of blocks. The resulting motion vectors are not the best, but they are only going to be used as starting points for better ones.
2. When searching large blocks, skip some of the pixels of a block. The algorithm may, for example, use just one-quarter of the pixels of the large blocks, one half of the pixels of smaller blocks, and so on.
3. Select the block sizes such that the block used in step i is divided into several (typically four or nine) blocks used in the following step. This way a single motion vector calculated in step i can be used as an estimate for several better motion vectors in step i + 1.
Multidimensional Search Space Methods: These methods are more complex. When searching for a match for block B, such a method looks for matches that are rotations or zooms of B, not just translations. A multidimensional search space method may also find a block C that matches B but has different lighting conditions. This is useful when an object moves among areas that are illuminated differently. All the methods discussed so far compare two blocks by comparing the luminance values of corresponding pixels. Two blocks B and C that contain the same objects but differ in luminance would be declared different by such methods.
When a multidimensional search space method finds a block C that matches B but has different luminance, it may declare C the match of B and append a luminance value to the compressed frame B. This value (which may be negative) is added by the decoder to the pixels of the decompressed frame, to bring them back to their original values. A multidimensional search space method may also compare a block B to rotated versions of the candidate blocks C. This is useful if objects in the video presentation may be rotated in addition to being moved. The algorithm may also try to match a block B to a block C containing a scaled version of the objects in B. If, for example, B is of size 8×8 pixels, the algorithm may consider blocks C of size 12×12, shrink each to 8×8, and compare it to B. This kind of block search involves many extra operations and comparisons. We say that it increases the size of the search space significantly, hence the name multidimensional search space. It seems that at present there is no multidimensional search space method that can account for scaling, rotation, and changes in illumination and also be fast enough for practical use.