Go Back   TechArena Community > ARENA > Education Career and Job Discussions
Become a Member!
Forgot your username/password?
Register Tags Active Topics RSS Search Mark Forums Read

Sponsored Links



gate 2010

Education Career and Job Discussions


Reply
 
Thread Tools Search this Thread
  #1  
Old 18-06-2009
Member
 
Join Date: Jun 2009
Posts: 1
Exclamation gate 2010
  

I am final year student of B Tech (chemical).I am preparing for gate 2010.
but I am confused that from where i should start for preparation.again I have one question regarding the maths that which text book should i prefer which will contain objectives and solutions for maths.I have read the IIT, NIT ranking which was given by amar sexena .I want to know that is it true that all the NITS admission will be on the behalf of GATE score or each have its own entrance test.

Reply With Quote
  #2  
Old 18-06-2009
Member
 
Join Date: May 2008
Posts: 616
Re: gate 2010

Mathematics for Gate 2010

Here is the syllabus for Gate-2010 : Maths. Before purchasing the textbook, kindly check whether the following topics are covered in it.

Linear Algebra: Finite dimensional vector spaces; Linear transformations and their matrix representations, rank; systems of linear equations, eigen values and eigen vectors, minimal polynomial, Cayley-Hamilton Theroem, diagonalisation, Hermitian, Skew-Hermitian and unitary matrices; Finite dimensional inner product spaces, Gram-Schmidt orthonormalization process, self-adjoint operators.

Complex Analysis: Analytic functions, conformal mappings, bilinear transformations; complex integration: Cauchy’s integral theorem and formula; Liouville’s theorem, maximum modulus principle; Taylor and Laurent’s series; residue theorem and applications for evaluating real integrals.

Real Analysis: Sequences and series of functions, uniform convergence, power series, Fourier series, functions of several variables, maxima, minima; Riemann integration, multiple integrals, line, surface and volume integrals, theorems of Green, Stokes and Gauss; metric spaces, completeness, Weierstrass approximation theorem, compactness; Lebesgue measure, measurable functions; Lebesgue integral, Fatou’s lemma, dominated convergence theorem.

Ordinary Differential Equations: First order ordinary differential equations, existence and uniqueness theorems, systems of linear first order ordinary differential equations, linear ordinary differential equations of higher order with constant coefficients; linear second order ordinary differential equations with variable coefficients; method of Laplace transforms for solving ordinary differential equations, series solutions; Legendre and Bessel functions and their orthogonality.

Algebra: Normal subgroups and homomorphism theorems, automorphisms; Group actions, Sylow’s theorems and their applications; Euclidean domains, Principle ideal domains and unique factorization domains. Prime ideals and maximal ideals in commutative rings; Fields, finite fields.

Functional Analysis: Banach spaces, Hahn-Banach extension theorem, open mapping and closed graph theorems, principle of uniform boundedness; Hilbert spaces, orthonormal bases, Riesz representation theorem, bounded linear operators.

Numerical Analysis: Numerical solution of algebraic and transcendental equations: bisection, secant method, Newton-Raphson method, fixed point iteration; interpolation: error of polynomial interpolation, Lagrange, Newton interpolations; numerical differentiation; numerical integration: Trapezoidal and Simpson rules, Gauss Legendre quadrature, method of undetermined parameters; least square polynomial approximation; numerical solution of systems of linear equations: direct methods (Gauss elimination, LU decomposition); iterative methods (Jacobi and Gauss-Seidel); matrix eigenvalue problems: power method, numerical solution of ordinary differential equations: initial value problems: Taylor series methods, Euler’s method, Runge-Kutta methods.

Partial Differential Equations: Linear and quasilinear first order partial differential equations, method of characteristics; second order linear equations in two variables and their classification; Cauchy, Dirichlet and Neumann problems; solutions of Laplace, wave and diffusion equations in two variables; Fourier series and Fourier transform and Laplace transform methods of solutions for the above equations.

Mechanics: Virtual work, Lagrange’s equations for holonomic systems, Hamiltonian equations.

Topology: Basic concepts of topology, product topology, connectedness, compactness, countability and separation axioms, Urysohn’s Lemma.

Probability and Statistics: Probability space, conditional probability, Bayes theorem, independence, Random variables, joint and conditional distributions, standard probability distributions and their properties, expectation, conditional expectation, moments; Weak and strong law of large numbers, central limit theorem; Sampling distributions, UMVU estimators, maximum likelihood estimators, Testing of hypotheses, standard parametric tests based on normal, X2 , t, F – distributions; Linear regression; Interval estimation.

Linear programming: Linear programming problem and its formulation, convex sets and their properties, graphical method, basic feasible solution, simplex method, big-M and two phase methods; infeasible and unbounded LPP’s, alternate optima; Dual problem and duality theorems, dual simplex method and its application in post optimality analysis; Balanced and unbalanced transportation problems, u -v method for solving transportation problems; Hungarian method for solving assignment problems.

Calculus of Variation and Integral Equations: Variation problems with fixed boundaries; sufficient conditions for extremum, linear integral equations of Fredholm and Volterra type, their iterative solutions.
Reply With Quote
  #3  
Old 25-07-2009
Member
 
Join Date: Jul 2009
Location: New York
Posts: 4
Re: gate 2010

Who is amar saxena ?

Regarding Gate, review the book RD sharma objective and IIT gate refresher book.
Reply With Quote
Reply

  TechArena Community > ARENA > Education Career and Job Discussions
Tags: ,



Thread Tools Search this Thread
Search this Thread:

Advanced Search


Similar Threads for: "gate 2010"
Thread Thread Starter Forum Replies Last Post
E.Y.E.: Divine Cybermancy: replacement of Gate and the 3 gate VictoriouZ Video Games 6 05-08-2011 07:57 PM
What about the next version of Baldurs Gate? pREMAsAGAR Video Games 4 26-05-2011 10:24 AM
Does Bluetooth Gate is Bigger than antenna gate for iOS 4 Zathara Portable Devices 4 10-02-2011 09:12 PM
Need Help for Gate 2010 Minu Pandey Education Career and Job Discussions 2 08-05-2010 02:43 PM
What is Red Gate's .NET Reflector Antonio1 Windows Software 4 22-03-2010 09:01 AM


All times are GMT +5.5. The time now is 09:22 PM.